Reduction of elliptic curves over certain real quadratic number fields
نویسنده
چکیده
The main result of this paper is that an elliptic curve having good reduction everywhere over a real quadratic field has a 2-rational point under certain hypotheses (primarily on class numbers of related fields). It extends the earlier case in which no ramification at 2 is allowed. Small fields satisfying the hypotheses are then found, and in four cases the non-existence of such elliptic curves can be shown, while in three others all such curves have been classified.
منابع مشابه
2 9 A ug 2 00 7 On the modularity of supersingular elliptic curves over certain totally real number fields
We study generalisations to totally real fields of the methods originating with Wiles and Taylor-Wiles ([32], [31]). In view of the results of Skinner-Wiles [26] on elliptic curves with ordinary reduction, we focus here on the case of supersingular reduction. Combining these, we then obtain some partial results on the modularity problem for semistable elliptic curves, and end by giving some app...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملEquivalences between Elliptic Curves and Real Quadratic Congruence Function Fields
In 1994, the well-known Diie-Hellman key exchange protocol was for the rst time implemented in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals of a real quadratic number eld. This set does not possess a group structure, but instead exhibits a so-called infrastructure. More recently, the scheme was extended to real quadratic congruence function e...
متن کاملOn the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملComputing the rank of elliptic curves over real quadratic number fields of class number 1
In this paper we describe an algorithm for computing the rank of an elliptic curve defined over a real quadratic field of class number one. This algorithm extends the one originally described by Birch and Swinnerton-Dyer for curves over Q. Several examples are included.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 1999